Fish Physiology and Genetics in FishBase

Royal Museum for Central Africa (RMCA Tervuren)

FishBase

Contents

1. Fish physiology

2. Genetics

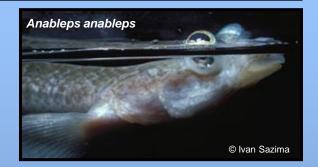
Royal Museum for Central Africa (RMCA Tervuren)

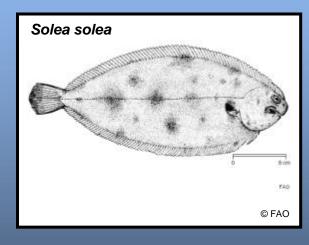
1. FISH PHYSIOLOGY

- In FishBase, fish physiology is covered by 7 different tables:
 - **1. VISION**
 - 2. BRAINS
 - **3. METABOLISM**
 - 4. SWIMMING TYPE and SPEED
 - 5. GILL AREA
 - 6. SOUNDS
 - 7. (PROCESSING)

Information by Topic

Trophic ecology	Life history	Uses	Miscellaneous
O Diet	○ Growth	 Aquaculture 	 Treaties & Conv.
 Food items 	L-W relationship	 Aquaculture profiles 	CITES
 Food consumption 	 Length frequencies 	Introductions	CMS
Ration	Recruitment	Diseases	National databases
Predators	Reproduction	O Giguatora	Names by Language
Physiology/Behavior	 Maturity 	Processing	Collaborators
 Metabolism 	 Spawning 		O Public aquariums
◯ Gill area	 Fecundity 	Genetics	Expeditions
◯ Brains	○ Eggs	 Allele frequencies 	◯ Video
Vision	 Egg dev. 	 Heritability 	Fish stamps and coins
 Fish sounds 	🔿 Larvae	Otoliths	Uploaded photos online
 Swim. speed 	 Larval dynamics 	Mass conversion	 Editor messages
	Abundance		

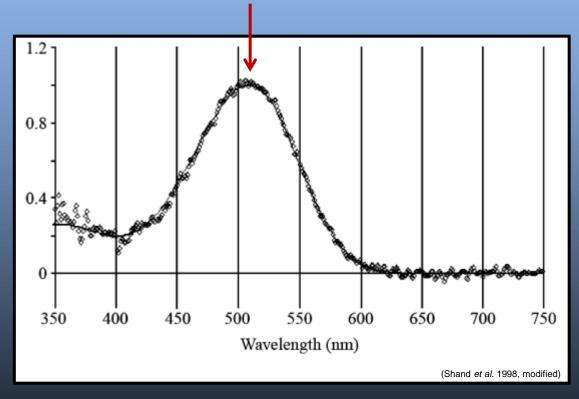



1.1. VISION

- fish have fairly complex « camera-type » eyes •
- their eyes need to be highly developed: many are sight-feeders ٠ rather than smell-feeders
- adaptations to habitat ٠
- fish have a more spherical lense and flattened cornea ٠ compared to terrestrial animals

© Curt Deckert (modified)

FishBase and Fish Taxonomy Training Session 2017


Royal Museum for Central Africa (RMCA Tervuren)

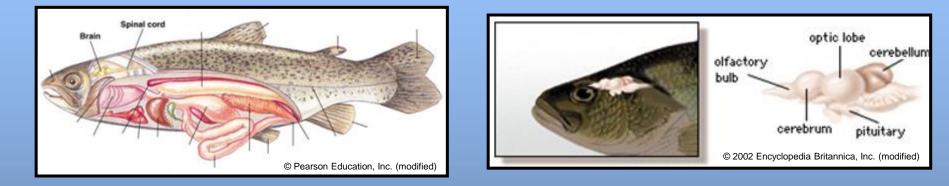
1.1. VISION

• water deeper than 15 meters acts as an optical filter excluding most infrared and ultraviolet light

 \rightarrow less need for fish to have an extended color vision

• the sensitivity of a fish eye is maximal at a certain wavelength (λ_{max}) . This value and its 95 % confidence interval are the essential entries for the Vision Table in **FishBase**

1.1. VISION


Search Page Species Summary Page Information by Topic Acaronia nassa (Heckel, 1840) Bigeye cichlid Trophic ecology Life history Uses Miscellaneous O Diet Treaties & Conv. Growth Aquaculture Upload your photos and videos Add your observation in Fish Watcher Food items ○ L-W relationship Aquaculture profiles ○ CITES Native range | All suitable habitat | PointMap Pictures | Google image Food consumption ⊖ CMS Length frequencies Introductions Ration Recruitment O Diseases National databases Predators Reproduction Ciguatera Names by Language Maturity O Processing Collaborators Physiology/Behavior Metabolism Spawning Ecotoxicology O Public aquariums Gill area Fecundity Genetics Expeditions ○ Eggs Allele frequencies ○ Video) Drains Acaronia nassa This may was computer-presented and has not yet been remarked Accesses reason Accesses Date sources OBP CBIS O Egg dev. Heritability Fish stamps and coins Vision Picture by Hippocampus-Bildarchiv Otoliths Uploaded photos online Larvae O Swim. speed C Larval dynamics Mass conversion Editor messages More information Abundance Common names Age/Size References Collaborators Countries FAO areas Growth Pictures Synonyms Aquaculture Aquaculture profile Metabolism Length-weight Stamps, Coins Ecosystems Length-length Occurrences Predators Strains Sounds Introductions Ecotoxicology Length-frequencies Genetics Ciguatera Stocks Reproduction Morphometrics Allele frequencies Speed Ecology Maturity Morphology Heritability Swim, type Diet Spawning Larvae Diseases Gill area Food items Fecundity Larval dynamics Otoliths Processing Food consumption Eggs Recruitment noie Brains Ration Egg development Abundance Tiston Vision of Acaronia nassa Main ref. Ali, M.A. and H.-J. Wagner 1975 Data ref. Maximum sensitivity 507.90 Munz, W.R.A. 1973 Confidence interval Other pigment(s) present Remarks Ratio: 68.2% A1.

Royal Museum for Central Africa (RMCA Tervuren)

1.2. BRAINS

• most fishes have small brains, at least when compared to warm-blooded vertebrates

- fish have evolved the brain size they need; difference in brain size between species of fish can be used to draw inferences on their 'needs' (i.e. on their niche) and behavior
- Roland **Bauchot** and his collaborators developed a brain size database (Bauchot and Bauchot 1986; Bauchot *et al.* 1989)
 - because juveniles have larger brain relative to body weight than adults, it was mostly **adult fishes** which were used for comparative studies
 - available in **FishBase**

Environmental Biology of Fishes Vol. 25, No. 1–3, pp. 205–219, 1989 © Kluwer Academic Publishers, Dordrecht.

The brain organization of butterflyfishes

Roland Bauchot¹, Jean-Marc Ridet¹ & Marie-Louise Bauchot² ¹Laboratoire d'Anatomie Comparée, Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France ²Laboratoire d'Ichthyologie générale et appliquée, Muséum National d'Histoire Naturelle, 23 rue Cuvier, 75231 Paris Cedex 05, France

1.2. BRAINS

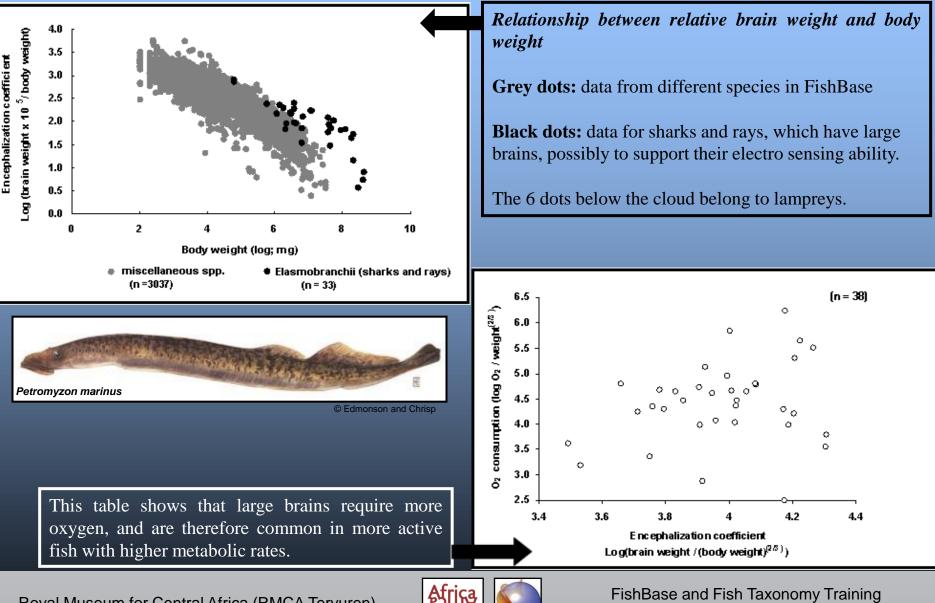
es Summary Page	Species Summary Pa		age	Search Pa	
					nformation by Topic
		Miscellaneous Treates & Corx. CITES CMB National databases Names by Language Collaborators Public aquations Expenditions Video Faih stamps and coins Uploaded photos online Editor messages	Uses Aquatouthure Aquatouthure profiles Interductions Decrees Ciguiters Processing Ecotoxic slogy Cerretics Alible Texpancies Hiertubility Otoliths	Life history Growth Langth frequencies Recruitment Reproduction Haturity Spawning Fecundity Eggs Gg dev. Lange Lange dev. Lange	Trephic acology Dilet Food items Rotion Precision Precision Metaboliem Gill areas Bitano. Viaco Fran sconde Stare.
crof	Scorpaena so	O Uploaded photos online	O Cloths	() Larvae	O Fish sounds

Relationships between fish brain weights and body weights for Scorpaena scrofa

Roland Bauchot, Monique Diagne, Roland Platel, Jean-Marc Ridet and Marie-Louise Bauchot Universit[®] Paris 7 Laboratoire d'anatomie compar[®]e

[n = 4]

Sort by : O Body weight O Brain weight O SL O TL O Ref.


Relative brain weight graph (loading may take 2-3 min.)

Body weight (W; g)	Brain weight (B; mg)	Encephalization coefficients		SL (cm)	TL (cm)	Ref	
		(B/W)	(B/W^	2/3)			
130	105	0.8080			15.3	19	
185	125	0.6760			17.8	22.3	
240	155	0.6460			19.8	24.8	
620	170	0.2740			25.7	32	

Second encephalization coefficient, standardizing for body weight

1.2. BRAINS

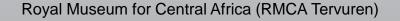
TERVUREN

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonor Session 2017

Search Page

Species Summary Page


Metabolic rate is usually measured by the rate of respiration, i.e. the rate of **oxygen consumption**.

Useful information for fish culture and fishery management a.o.

Documents the oxygen consumption of species, based on experiments published in literature. 7,000 records for over 300 species

	n = 52 Relative oxygen consumption graph (loading may take 2-3 mins.)							
Oxygen cor	sumption	Weight	Temperature	Salinity	Activity	Applied stress		
(mg/kg/h)	at 20°C	(g)	(°C)					
46	30.4	228.00	25.0	0	routine	hypoxia		
52	34.1	144.70	25.0	0	routine	hypoxia		
53	34.9	195.00	25.0	0	routine	hypoxia		
53	34.9	229.30	25.0	0	routine	hypoxia		
53	35.3	250.30	25.0	0	routine	hypoxia		
56	37.2	203.10	25.0	0	routine	hypoxia		
57	34.7	310.00	26.0	0	standard	none specified		
73	48.2	80.40	25.0	0	routine	hypoxia		
81	53.4	39.60	25.0	0	routine	hypoxia		
88	58.2	101.40	25.0	0	routine	hypoxia		
93	61.5	77.00	25.0	0	routine	none specified		
94	57.4	310.00	26.0	0	routine	none specified		
94	62.4	47.00	25.0		standard	none specified		
104	68.5	30.00	25.0	0	routine	hypoxia		
104	68.8	80.00	25.0	0	standard	none specified		
107	70.9	23.50	25.0	0	routine	hypoxia		
111	49.4	310.00	30.0	0	standard	temperature		
112	74.3	28.00	25.0	0	routine	hypoxia		
118		310.00	35.0	0	standard	temperature		
122	80.8	29.90	25.0	0	routine	hypoxia		
123	81.4	16.60	25.0	0	routine	hypoxia		
124	81.7	22.80	25.0	0	routine	hypoxia		
134	88.7	80.00	25.0	0	standard	none specified		
135		310.00	35.0	0	routine	temperature		
142	94.2	9.50	25.0	0	routine	hypoxia		
143	63.3	310.00	30.0	0	routine	temperature		
156	103.1	17.10	25.0	0	routine	hypoxia		
173	114.5	83.89	25.0	12	routine	none specified		
186	123.0	9.20	25.0	0	routine	hypoxia		
199	131.7	82.66	25.0	23	routine	none specified		
214	141.6	83.89	25.0	12	routine	none specified		
219	144.9	88.84	25.0	8	routine	none specified		
220	145.6	77.10	25.0	0	routine	none specified		
246	162.7	2.10	25.0	0	routine	hypoxia		

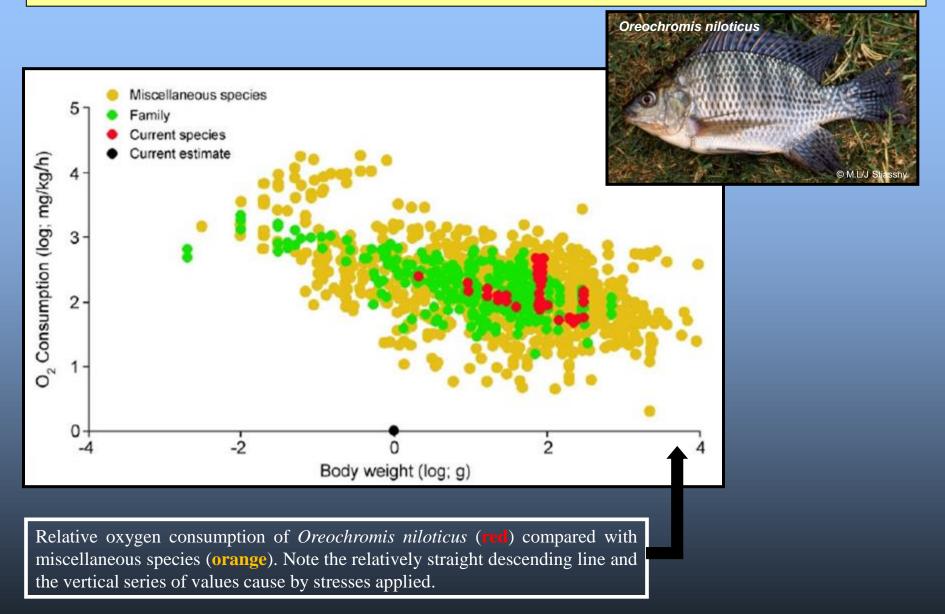
Oxygen Consumption Studies for Oreochromis niloticus

• available are the factors known or likely to affect the metabolic rate: body weight, temperature, salinity, oxygen concentrations, activity level, swimming speed, applied stress, ...

Oxygen Consumption Studies Summary for Oreochromis niloticus

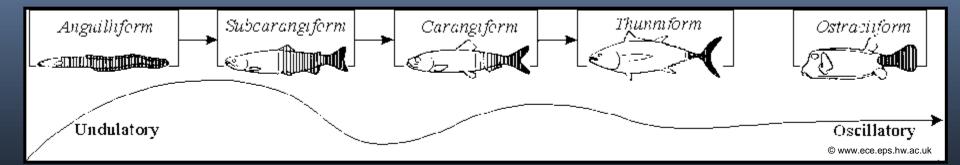
Main Ref.	Becker, K. and L. Fishelson, 1986
Species (OXYREF)	Oreochromis niloticus Ref. Becker, K. and L. Fishelson, 1986
Weight (g)	310.0
Sex	unsexed
Number	4
Temperature (°C)	30.0
Salinity (ppm)	0
100% oxygen (mg/l)	
Oxygen	
Saturation %	
Oxygen consumption (mg/kg/h)	111.4
at 20 C (mg/kg/h)	49.4
Activity level	standard © M.L/J Stassny
Applied stress	temperature
Swimming speed (BL/s)	
Comments	

- **Oxygen** = O_2 concentration of the test water (mg/l)
- *Saturation* = actual oxygen concentration of the test water as percent of the maximum possible oxygen content.
- *Activity level* = standard (resting fish), routine (spontaneously active fish) and active (swimming fish)


Oxygen Consumption Studies Summary for Oreochromis niloticus				
Main Ref.	Becker, K. and L. Fishelson, 1986			
Species (OXYREF)	Oreochromis niloticus Ref. Becker, K. and L. Fishelson, 1986			
Weight (g)	310.0			
Sex	unsexed			
Number	4			
Temperature (°C)	30.0			
Salinity (ppm)	0			
100% oxygen (mg/l)				
Oxygen				
Saturation %				
Oxygen consumption (mg/kg/h)	111.4			
at 20&C (mg/kg/h)	49.4			
Activity level	standard			
Applied stress	temperature			
Swimming speed (BL/s)				
Comments				

- *Applied stress* = pertains to stress applied before or during an experiment (none specified, temperature, photoperiod, feeding, starvation, toxins, hypoxia, hypercapnia, (changes in) salinity, high or low pH, sedative, transport and other stress
- *Swimming speed* = another index of activity; reported as/converted to BL/s (BL = fork length or total length)

Main Ref.Becker, K. and L. FishSpecies (OXYREF)Oreochromis niloticusWeight (g)310.0SexunsexedNumber4Temperature (°C)30.0Salinity (ppm)0100% oxygen (mg/l)0Oxygen5aturation %	nelson, 1986 Ref. Becker, K. and L. Fishelson, 1986
Species (OXYREF) Oreochromis niloticus Weight (g) 310.0 Sex unsexed Number 4 Temperature (°C) 30.0 Salinity (ppm) 0 100% oxygen (mg/l) —	
Weight (g)310.0SexunsexedNumber4Temperature (°C)30.0Salinity (ppm)0100% oxygen (mg/l)	Ker. Becker, K. and L. Fishelson, 1986
SexunsexedNumber4Temperature (°C)30.0Salinity (ppm)0100% oxygen (mg/l)	
Number 4 Temperature (°C) 30.0 Salinity (ppm) 0 100% oxygen (mg/l) 0 Oxygen (mg/l)	
Temperature (°C) 30.0 Salinity (ppm) 0 100% oxygen (mg/l) 0 Oxygen	
Salinity (ppm) 0 100% oxygen (mg/l) 0 Oxygen 0	
100% oxygen (mg/l) Oxygen	
Oxygen	
Saturation %	
Oxygen consumption (mg/kg/h) 111.4	
at 20	
Activity level standard	
Applied stress temperature	
Swimming speed (BL/s)	
Comments	

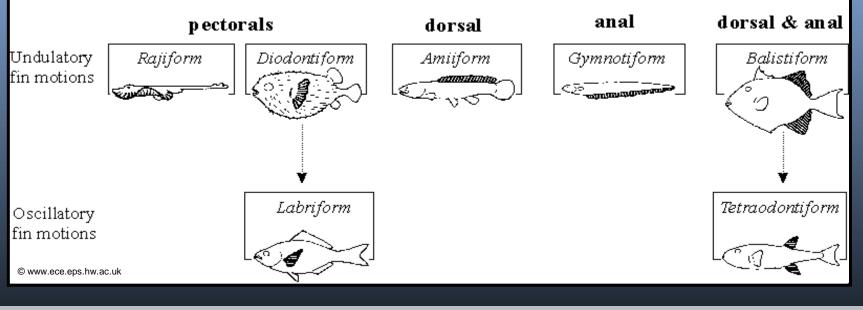


- The classification of swimming modes of fish consists of two levels (Lindsey 1978):
 - the first (Roman numerals) describe what may be called as the swimming "*type*"
 - the second (bullets) describe the swimming "*mode*" proper

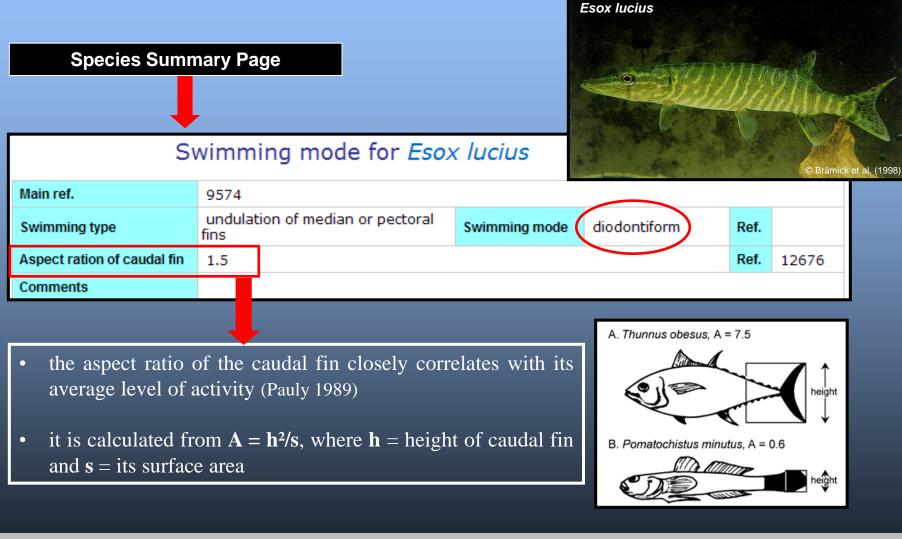
I. Movements of the body and/or caudal fin:

- Anguilliform
- Subcarangiform
- Carangiform
- Thunniform
- Ostraciiform

The modes in I imply a gradual transition from **undulation** of the **entire body** (including trunk) being used for propulsion to propulsive forces being generated only by **oscillating caudal fin.**



- **II**. **Undulation** of median or pectoral fins:
 - Amiiform
 - Gymnotiform
 - Balistiform
 - Rajiform
 - Diodontiform
- **III. Oscillations** of median or pectoral fins:
 - Tetraodontiform
 - Labriform

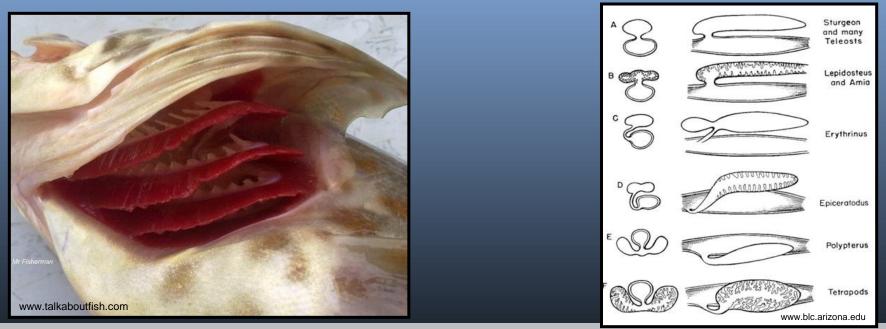

Ranking of modes in I and II to III implies gradual transition from **undulations to oscillations** as the movements generating major propulsive force.

Fish may have two swimming modes!

• note that this table presently pertains only to juvenile and adult fish; fish larvae have limited repertoire of swimming types and modes

Search Pa	age	_		Species Summa	ary Page
				Esox lucius	5
	Swimmi	ng speeds of <i>Esox</i>	(lucius		all and
	Sort by : () Speed (m/s	s) 🔘 (Lengths/s) 🔘 Mode 🔘 Lo	ength type 🔘 Length		© Brämick et al. (199
Speed (m/s)	(Lengths/s)	Mode	Length type	Length	
Speed (m/s) 1.44	(Lengths/s) 3.9	Mode sustained	Length type	Length 37	
				_	
1.44	3.9	sustained	ΤL	37	
1.44 1.47	3.9 7.37	sustained burst	TL SL	37 20	
1.44 1.47 1.5	3.9 7.37 7.5	sustained burst burst	TL SL TL	37 20 20	

	Swimming speed for Esox lucius
Main ref.	Bainbridge, R. 1958
Data Ref.	
Length (cm)	16 TL
Speed (m/s)	2.032
Speed (L/s)	12.7
Comments	


- mode = describes mode of swimming as sustained, burst or other
- transformation to SL/s and m/s allows comparison

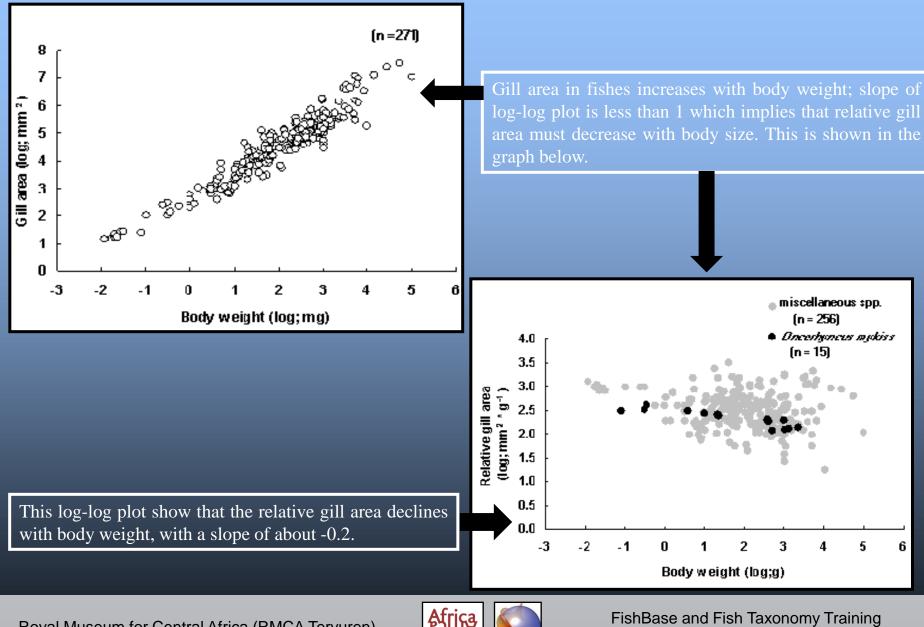
Royal Museum for Central Africa (RMCA Tervuren)

•

- this table presents measurements of the gill area in fishes so far published
- *Gill area* = surface area that limits the oxygen intake and hence the metabolic rate and growth rate of fishes
- species-specific differences in gill area can be related to swimming mode, activity level (caudal fin aspect ration), ...
- some species have air breathing organs allowing to take oxygen directly from the air (intestine, lung-like structures, modified gas bladders, ...)

Search Page Species Summary Page

Relative gill area studies for Oreochromis niloticus niloticus


Gill area vs body weight graph (loading may take 2-3 min.) [n=1]

Body weight	Gill area	Gill area / weight	Ref.	Blood/water distance	Ref.
(g)	(cm²)	(cm²/g)		(μm)	
1000.00000	1024.83997	1.02			

Gill Area Summary for Oreochromis niloticus

Main Ref:	Narcisco Fernandes, M., 1996
Body weight (g):	1000.00000
Gill area (cm□):	1024.83997
Gill area / weight (cm□/g):	1.02
Blood/water distance (□m):	
Comment:	
Entered by: Froese, Rainer - 18.12.98	Back to Search

TERVURE

Royal Museum for Central Africa (RMCA Tervuren)

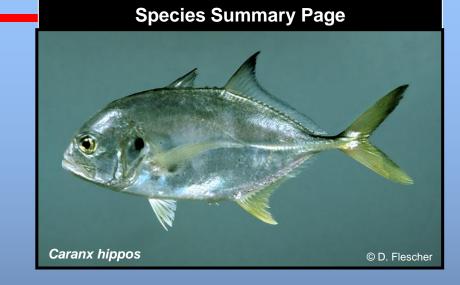
• selecting "**Graphs**" in the "Information by Family" section of the Search Page allows the user to create Relative brain weight, Gill Area and Relative oxygen consumption graphs for different families

Search Page			
Information by Family			
~			~
◯ Family info.	O Identification by pictures	◯ References (FishBase)	Graphs
◯ All fishes	 List of pictures 	 Missing photos 	O Species Ecology Matrix
○ Nominal species	O Identification keys	Stamps and coins	
Graphs by Family			
Select Family:	~		~
O Auximetric graph	○ Lm vs Linf graph	O Reproduct	ive load graph
O M vs K graph	○ M vs Linf graph	O Length-we	eight (a vs b) graph
Q Relative brain weight graph	O Gill area graph	C Relative o	xygen consumption graph

1.6. SOUNDS

- sounds are ideal for animals to communicate in water. Fishes produce sounds in different behavioral contexts:
 - intraspecific competition, territorial behavior, ...
- sounds can be produced **passively** ('mechanical sounds', byproducts of foraging, moving,) or **actively** ('biological sounds', using organs initially developed to perform other functions)
- fishes can make different **types of sounds**:
 - grunts 0
 - croaks
 - clicks \cap
 - snaps 0
- fish sounds are produced by:
 - rubbing or striking together skeletal components or teeth (*stridulating*) Ο
 - using muscles (sonic muscles) on or near swim bladder (drumming) 0
 - quickly changing speed and direction while swimming (hydrodynamics) 0

Synodontis melanopterus



1.6. SOUNDS

Soarch Page

Search Page						
Information by Topic						
Trophic ecology Diet Food items Food consumption Ration Predators Physiology/Behavior Metabolism Gill area Pains Vision Vision Fish sounds	Life history Growth L-W relationship Recruitment Reproduction Maturity Spawning Fecundity Eggs Egg dev. Lavvee	Uses Aquaculture Aquaculture profiles Introductions Diseases Clguatera Processing Ecotoxicology Genetics Allele frequencies Heritability Otoliths	Miscellaneous Treaties & Conv. CITES CMS National databases Names by Language Collaborators Public aquariums Expeditions Video Fish stamps and coins Uploaded photos online			
Swin. speed	 Larval dynamics Abundance 	Mass conversion	Editor messages			

Sounds available for 90 fish species

List of Sound for Caranx hippos						
n = 2						
Main Ref. Sound File Type Production						
35830	CAHIP_S1	grunts	yes, active sound production			
35830	CAHIP_S2	croaks	yes, active sound production			

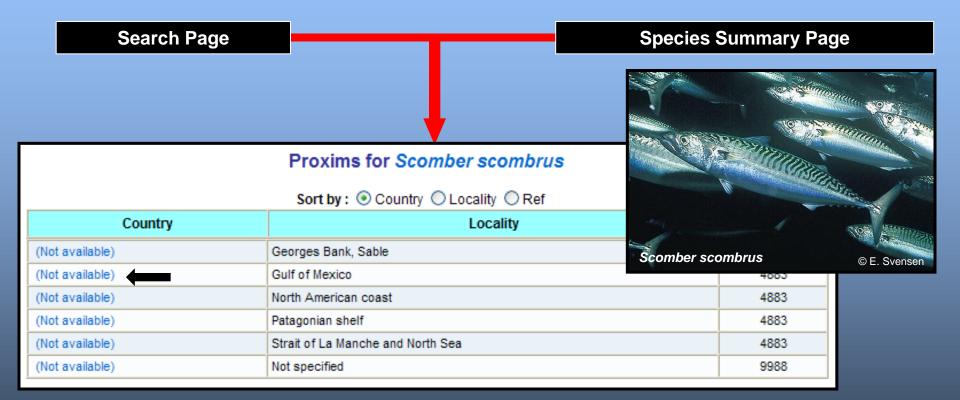
1.6. SOUNDS

Sounds Made by Caranx hippos

Picture by Carvalho Filho, A.

Please be patient while sound file is loaded. You may have to increase volume settings. If you did not hear the sound. Click here to download sound file.

Sound produced	yes, active sound production
Type of sound produced	croaks
Sound production organ	teeth & swim bladder
Sound mechanism	stridulation of well-toothed mouth reinforced by large swim bladder
Behavioural context	spontaneous, sustained croaking during capture in net, sounds easily stimulated with mild manual stimulation (continued production even out of water)
Reference	Fish, M.P. and W.H. Mowbray, 1970
Remark	


Synodontis squeaking https://www.youtube.com/watch?v=Z0P3rNI 0Fel

Royal Museum for Central Africa (RMCA Tervuren)

1.7. PROCESSING

• this table is an attempt to incorporate fish as a consumable product in FishBase

	Proximate An	alysis of Scom	per scombrus	Contraction of the second second			
	Mainly fro	m V.P. Bykov (1983, R	ef. 4883)				
Main ref.	Bykov, V.P., 1983	Bykov, V.P., 1983					
Country				© E. Sver			
Locality	Patagonian shelf						
Remark			upon the fat content of the fi s should be made from this n				
Weight proportions							
Chemical composition							
Body parts	Moisture %	Protein %	Fat %	Ash %			
Meat/Fillet	73.3 - 0	24.2 - 0	0.9 - 0	1.6 - 0			
Liver	60.4 - 71.8	17.7 - 19.4	5.5 - 16.4	1.3 - 2			
Roe	72.1 - 80.3	19.1 - 0	0.6 - 5.1	1.6 - 0			
Viscera	73.2 - 79.1	13.4 - 14	4.2 - 7.9	2 - 2.3			
Head/bone/fins	89.6 - 97.1	19.9 - 24.5	21.5 - 29.5	7.3 - 8.2			
Waste/offal	0 - 0	0 - 0	0 - 0	0 - 0			
Comment							

2.0. -

More information

Fish genetics is covered by 4 main tables in FishBase: ٠

GENETICS 1.

2. ALELLE FREQUENCIES

Life history

Growth

Maturity

Spawning

Fecundity

Egg dev.

Larvae

Larval dynamics

Abundance

Eggs

- HERITABILITY 3.
- 4. STRAINS

Species Summary Page

More information	
Countries	Common names
FAO areas	Synonyms
Ecosystems	Metabolism
Occurrences	Predators
Introductions	Ecotoxicology
Stocks	Reproduction

Miscellaneous

CITES

CMS

Treaties & Conv.

National databases

Names by Language

Collaborators

Expeditions

Video

Public aquariums

Fish stamps and coins

Editor messages

Uploaded photos online

Search Page

Information by Topic

Vision

Fish sounds

Swim. speed

Trophic ecology
Diet
) Food items
Food consumption
Ration
) Predators
Physiology/Behavior
Metabolism
) Gill area
D
Brains

L-W relationship Aquaculture profiles Length frequencies Introductions Recruitment Diseases Reproduction Ciguatera Processing Ecotoxicology Genetics Allele frequencies Heritability Otoliths

Mass conversion

Uses

Aquaculture

Growth Aquac Length-weight Aquac Length-length Strains Length-frequencies Geneti Morphometrics Allele Morphology Herita Larvae Diseas Larval dynamics Proces Recruitment Mass of Abundance Vision

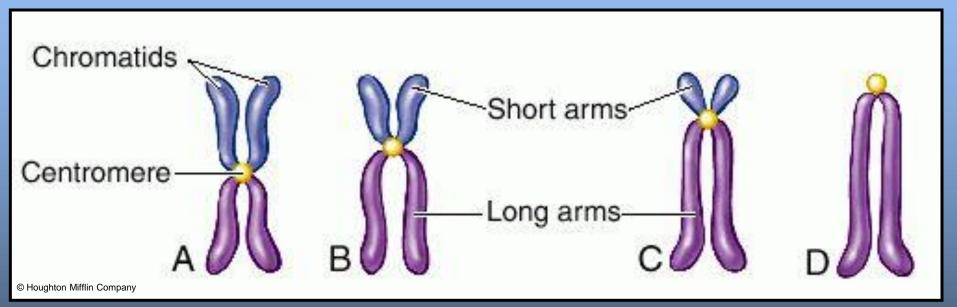
Age/Size

Collaborators
Pictures
Stamps, Coins
Sounds
Ciguatera
Speed
Swim. type
Gill area
Otoliths
Brains

Royal Museum for Central Africa (RMCA Tervuren)

• this table contains karyological and cellular DNA content data, important for studies of the genetics and systematics of fishes

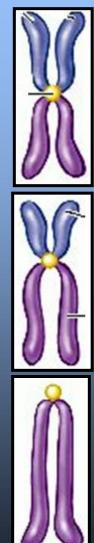
Search Page			- Snoo				
	Genetics Records (1 to 500 of 2,595) □ Show all records << < 12 3 4 5 6 > >>		Speer	ies Summ	ary Page		
Species Abbottina rivularis Abramis brama Abramis brama Abramits hypselonotus Abudefduf notatus Abudefduf notatus Abudefduf savatilis Abudefduf savatilis Abudefduf savatilis Abudefduf savatilis Abudefduf savatilis Abudefduf vagiensis Abudefduf vagiensis Abussocottus korotneffi Acantharchus pomotis Acanthocobitis botia Acanthogobius favimanus Acanthogobius latipes Acanthogoprus Itaus		Cyprinidae Cyprinidae Cyprinidae Cyprinidae Cyprinidae Pomacentridae Pomacentridae Pomacentridae Pomacentridae Pomacentridae Abyssocottidae Centrarchidae Nemachelidae Doradidae Gobildae Gobildae Sparidae	Clarias gariepi	inus	CLot	har Seegers	
Cel	G	enetics Records for Clar [n=3]	rias gariepi	nus			
	Sort by : Country Genetic markers Ref.						
Cromosome			Chromosor	ne number			
Constant Con	Locality	Country	Haploid/ gametic (n)	Diploid/ zygotic (2n)	Genetic markers	Ref.	
	Africa		28	56 - 56	No	2209	
DNA	Ivory Coast	Cote d'Ivoire	28	56 - 56	No	34370	



- *Chromosome number =* haploid and diploid chromosome number, range given if variable
- *Chromosome type* = numbers of chromosomes of different types

Genetics Summary for Clarias gariepinus						
Main ref.	Hinegardner, R. and D.E. Rosen, 1972					
Country						
Locality/Yr.	Africa			Sex.		
Chromosome number	Haploid/g	ametic (n) : 28		Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
	Diploid/zy	gotic (2n) : 56 - 56		Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
Chromosome Type				Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
Metacentric	8	Subtelocentric		MetaSubmetacentric		
Submetacentric	24	Telocentric/Acrocentric	24	Subtelo-Acrocentric		
Chromosome arm no.	88			Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
Sex determining mechanism			Ref.			
DNA Content (haploid)	1.2		Ref.	Hinegardner, R. and D.E. Rosen, 1972		
Genetic markers	No			Ref.		
Remarks		ven in the form are for the males. Females 3a, NF = 89. Location: Africa.	a have 8m +	Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	

Chromosome type depends on the position of the centromere


Position of the centromere in (A) metacentric; (B) submetacentric; (C) acrocentric; and (D) telocentric chromosomes.

Royal Museum for Central Africa (RMCA Tervuren)

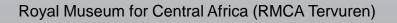
• *Chromosome arm number* = largely dependent on chromosome type; metacentric chromosome has 2 arms, telocentric only one

Genetics Summary for Clarias gariepinus						
Main ref.	Hinegard	ner, R. and D.E. Rosen, 1972				
Country						
Locality/Yr.	Africa			Sex.		
Chromosome number	Haploid/g	ametic (n) : 28		Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
	Diploid/zy	gotic (2n) : 56 - 56	Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990		
Chromosome Type			Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990		
Metacentric	8	Subtelocentric		MetaSubmetacentric		
Submetacentric	24	Telocentric/Acrocentric	24	Subtelo-Acrocentric		
Chromosome arm no.	88	=(2*8)+(2*24)+24		Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	
Sex determining mechanism				Ref.		
DNA Content (haploid)	1.2		Ref.	Hinegardner, R. and D.E. Rosen, 1972		
Genetic markers	No		Ref.			
Remarks		ven in the form are for the males. Females 3a, NF = 89. Location: Africa.	s have 8m +	Ref.	Ozouf-Costaz, C., G.G. Teugels and M. Legendre, 1990	

• *Sex determination mechanism* = information on how males and females of the species are designated; **ZW** = females, two different kinds of chromosomes; **ZZ** = males, same chromosomes

Genetics Summary for Clarias gariepinus					
Main ref.	Klinkhardt, M, M. Tesche and H. G	reven, 19	995		
Country	Cote d'Ivoire				
Locality/Yr.	Ivory Coast		Sex. female		
Chromosome number	Haploid/gametic (n) : 28		Ref.		
	Diploid/zygotic (2n) : 56 - 56		Ref. Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992		
Chromosome Type			Ref. Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992		
Metacentric	8 Subtelocentric		MetaSubmetacentric		
Submetacentric	25 Telocentric/Acrocentric	23	Subtelo-Acrocentric		
Chromosome arm no.	89		Ref. W W K BE BE SK SK 111(1(11)1		
Sex determining mechanism	ZW-ZZ				
DNA Content (haploid)					
Genetic markers	No		Ref. Female Male		
Remarks			Ref.		

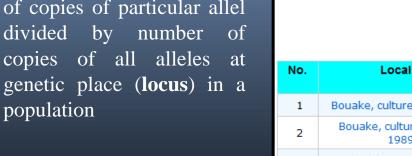
Royal Museum for Central Africa (RMCA Tervuren)


• *DNA content ('C-value')* = gives specific haploid cellular content (in picograms); a measure for cell size (large cells = high amount of DNA per cell)

Genetics Summary for Clarias gariepinus							
Main ref.	Klinkh	Klinkhardt, M, M. Tesche and H. Greven, 1995					
Country	Cote d	Ivoire					
Locality/Yr.	Ivory C	coast		Sex.	female		
Chromosome number	Haploi	d/gametic (n) : 28		Ref.			
	Diploid	/zygotic (2n) : 56 - 56	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992				
Chromosome Type				Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992		
Metacentric	8	Subtelocentric		MetaSubmetacentric			
Submetacentric	25	Telocentric/Acrocentric	23	Subtelo-Acrocentric			
Chromosome arm no.	89			Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992		
Sex determining mechanism	ZW-ZZ			Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992		
DNA Content (haploid)				Ref.			
Genetic markers	No	No		Ref.			
Remarks				Ref.			

• *Genetic marker* = states whether genetic marker(s) exist in the species; a genetic marker is a gene or DNA sequence with a known location on a chromosome; used for paternity testing, tracing inheritance, ...

Genetics Summary for Clarias gariepinus									
Main ref.	Klinkhardt, M, M. Tesche and H. Greven, 1995								
Country	Cote d'Ivoire								
Locality/Yr.	Ivory Coast			Sex.	female				
Chromosome number	Haploid/gametic (n) : 28			Ref.					
	Diploid/zygotic (2n) : 56 - 56			Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992				
Chromosome Type				Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992				
Metacentric	8	Subtelocentric		MetaSubmetacentric					
Submetacentric	25	Telocentric/Acrocentric	23	Subtelo-Acrocentric					
Chromosome arm no.	89			Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992				
Sex determining mechanism	ZW-ZZ			Ref.	Teugels, G.G., C. Ozouf-Costaz, M. Legendre and M. Parrent, 1992				
DNA Content (haploid)				Ref.					
Genetic markers	No			Ref.					
Remarks				Ref.					



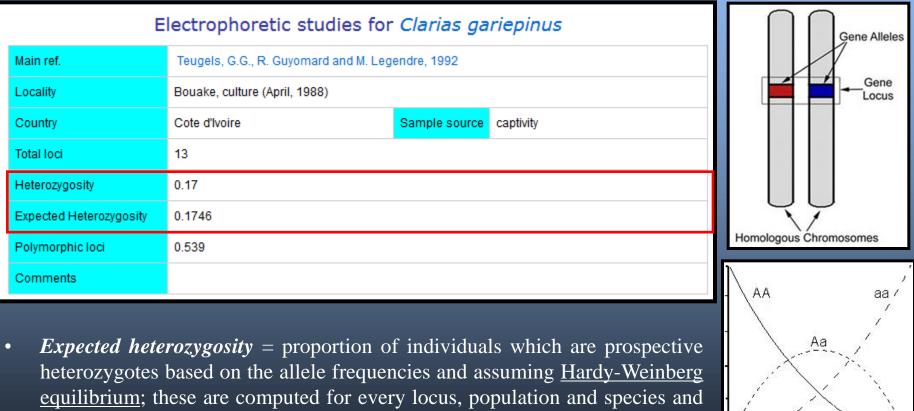
2.2. ALLELE FREQUENCIES

- information on **genetic structure** and **variability** of fish populations
- important for species/strain selection for **aquaculture** and will help the management and **conservation programs for natural stocks**

		Species Summary Page
Available Electrophoretic Studies		
n = 250		and the second s
Sort By: ● Species ○ English name ○ Family		
Yellowtail clownfish		
Courted to the set		
Mediterranean barbel		
	Callionymidae	
		Clarias gariepinus
number	List of populati	ions of <i>Clarias gariepinus</i>
	n = 250 Sort By: Sort Courses	n = 30 Sort By: Species English name English name English name English canthuridae Convict surgeonfish Convict surgeonfis

[n = 3]

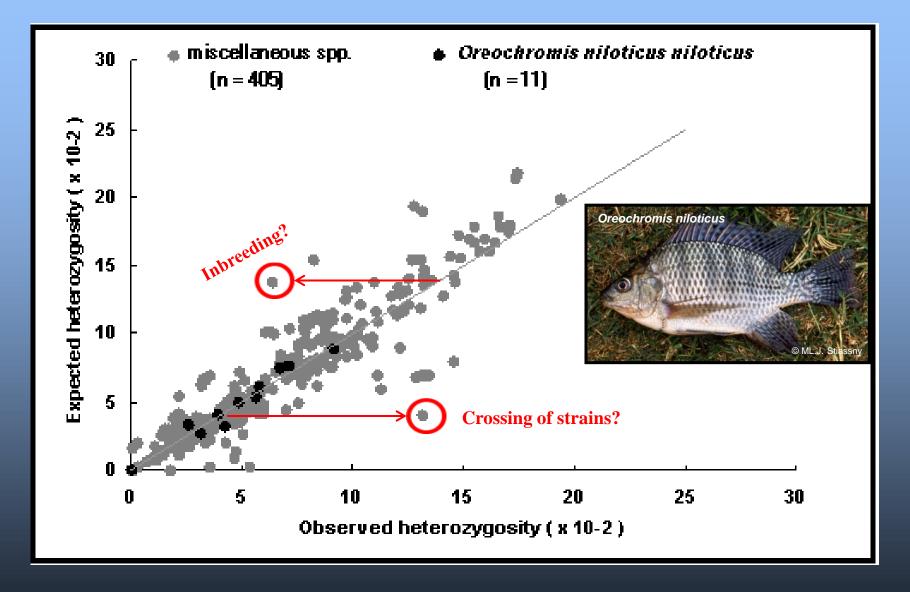
No.	Locality	Country	Total loci	Heterozygosity Obs. Exp.		Polymor-phic loci
1	Bouake, culture (April, 1988)	Cote d'Ivoire	13	0.17	0.1746	0.539
2	Bouake, culture (October, 1989)	Cote d'Ivoire	13	0.17	0.18	0.46
3	Seberi (September, 1989)	Niger	13	0.06	0.0673	0.154
	Average	13	0.133	0.141	0.384	


Royal Museum for Central Africa (RMCA Tervuren)

2.2. ALLELE FREQUENCIES

• *Heterozygosity* = proportion of individuals in **a population** that are heterozygous at a given number of loci

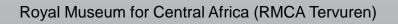
An individual with two different alleles (forms of a gene) at a particular locus is called a **heterozygote**; an individual is called a **homozygote** when two alleles at a particular locus are the same



help to indicate, for example, the potential for selective breeding

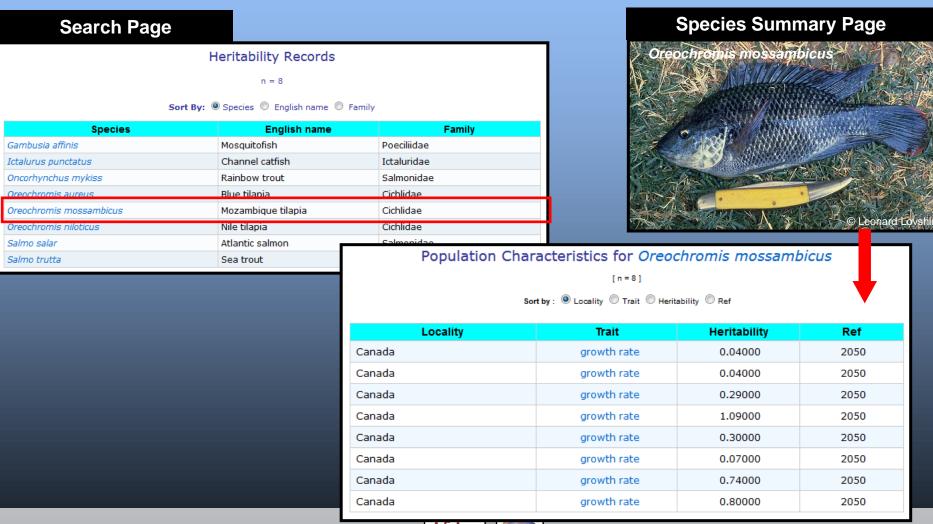
Royal Museum for Central Africa (RMCA Tervuren)

2.2. ALLELE FREQUENCIES



2.2. ALLELE FREQUENCIES

• **Polymorphic loci** = number of polymorphic loci/total number of loci examined; a locus is considered polymorphic if the frequency of the most common allele does not exceed 95%.


Electrophoretic studies for Clarias gariepinus				Gene Alleles
Main ref.	Teugels, G.G., R. Guyomard and M. Legendre, 1992			Gene
Locality	Bouake, culture (April, 1988)			
Country	Cote d'Ivoire	Sample source	captivity	
Total loci	13		ΙŲΨ	
Heterozygosity	0.17		Homologous Chromosomes	
Expected Heterozygosity	0.1746			
Polymorphic loci	0.539			
Comments				

2.3. HERITABILITY

- aims to assist the application of genetics to modern aquaculture
- contains records of heritabilities and responses to selection

Royal Museum for Central Africa (RMCA Tervuren)

2.3. HERITABILITY

• *Trait* = the desirable phenotypic character for improvement by selective breeding (e.g. growth rate, age and size at first maturity, egg number, size, weight and survival, larval survival, disease resistance, behavior, resistance to environmental factors, dressing weight, carcass quality, fat content, protein content, ...)

Heritability Summary for Oreochromis mossambicus					
Main ref.	Kamonrat, W. and R.W. Doyle, 1988				
Country	Canada				
Locality	Dalhousie University				
Trait	growth rate				
Comment	Scale circulus spacing (CIRC) - MECIRC.				
Mean	51.60000	Unit	hà		
S.D	0.04000	C.V	0	S.E	1.47000
Heritability	0.80000	Method	sib analysis		
Comment	Estimated heritability based on sire components of variance.				
Selection studies					
Response (%)		Method			
Comment			-		

Userita bilita - Companya dan One a shara ati a sa sa sa bisara

• *Heritability* (h^2) = the proportion of additive genetic variance in the total phenotypic variation, i.e. will the trait be expressed or passed on to the offspring? If a trait is sufficiently heritable ('fixed in the genes'), selective breeding is likely to be very effective; if h² is low, environmental factors have caused most variation and little genetic gain can be obtained by selection.

Royal Museum for Central Africa (RMCA Tervuren)

- allows the documentation of **ancestry of cultivated strains**
- strains may emerge through the simple act of domestication and restricted gene flow among farms or through breeding practices (selective breeding, chromosome-set manipulation, hybridization and/or gene transfer)

Tilapia ND 56 strain

Common carp varieties resulting from selective breeding and genetic improvement

© Fish Culture Research Institute Szarvas Hungary

- the registry can be used to locate fish with specific characters and to track genetic improvement technologies. However, by recording the number of breeding individuals in the strain, the registry can also serve as a watch list for potentially threatened strains.
- the genetic data, including histories of founding population, broodstock management, status of the strain and descriptions of the distinguishing characters of the strains will assist in the utilization and conservation of intraspecific genetic variation in aquaculture.

Tilapia ND-41 strain: all-male population without hormonal treatment for sex reversal

Rare guppy strain "Japan full golden albino" (*Poecilia reticulata*)

Oryzias latipes "glowfish"

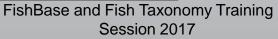
Royal Museum for Central Africa (RMCA Tervuren)

List of Strains for Oreochromis niloticus

[n = 30]

Sort by : Strain code Stock definition Ref.

Strain code	Stock definition	Main ref.	
ORNILED020	Oreochromis niloticus filoa: Uganda strain. Introduced to the Kajansi Fish Culture Station, Uganda from Lake George. Year of introduction and size of founding stock are unknown.		
ORNILED021	Oreochromis niloticus filoa: Israel strain. Introduced to the Gan Shmuel hatchery, Israel from Kajansi Fish Culture Station, Uganda by Pruginin in 1969. Founding stock consisted of 120 fry and a further sample (?) in 1970.		
ORNILNI001	DOR-Ghana 1974 strain. Introduced to the Fish and Aquaculture Research Station, DOR, Israel from the drainage system of Lake Volta, in the vicinity of Accra, Ghana in 1974. Founder stock included nine females and two males.		
ORNILNI002	Auburn_Egypt 1982 strain. Introduced to Auburn University, Alabama from Egypt in May 1982. Founder Stock of 65 females and 20 males were collected from Ismailia Canal one of the distributaries of the Nile River, about 0.75 km northeast of Cairo, Egypt.	166	
ORNILNI003	CLSU-Egypt 1988 strain. Introduced to the National Freshwater Fisheries Technology Res Earch Center of the Bureau of Fisheries and Aquatic Resources in CLSU, Nueva Ecija, Philippines from Egypt-in May, 1988 (1st collection) and in August 1989 (2nd collection). Collected from rivers, Canals and lakes in Egypt.		
ORNILNI004	J-Ghana 1988 strain. Introduced to the National Freshwater Fisheries nology Research Center of BFAR in Central Luzon State University, Nueva Ecija, opines from Ghana in October 1988. Founder stock of 220 fingerlings were cted from the Akosombo and Kpong dams (Kp <u>ong headpond) in the Volta River</u> .		
ORNILNI006	CLSU-Senegal 1988 strain. Introduced to the Bure Resources in Central Luzon State University, Nuev 1988. Founder stocks were collected from floodpla Dakar-Bangos (40 breeders) and Mbane (40 finger	trains S	


 MI002
 Auburn-Egypt 1982 strain. Introduced to Auburn University, Alabama from Egypt in May

 1982. Founder stock of 66 females and 20 males were collected from Ismailia Canal one of the distributaries of the Nile River, about 0.75 km northeast of Cairo, Egypt.
 166

Strains Summary for Oreochromis niloticus

Main ref.	166		•
Country	USA	Pic.	
Strain code	ORNILNI002	Trait	
Breeding strategy		Viability	
Size of founding stock	86	Source of founding stock	wild
Female	66		Ismailia Canal of Cairo, Egypt
Male	20	Strain code of source	
No. of broodstock		Year of arrival	1982
Years of first breeding			
Availability of strain			
Remarks	Commonly called 'Egypt strain' in the USA.	Ref.	

TERVUREN

• *Strain code* = unique combination of letters and a 3-digit number, the first two letters refer to the first two letters of the **genus**, letters 3-5 refer to the first three letters of the **species**, letters 6-7 refer to the first two letters of the **subspecies**; the number is sequential; if no subspecies exists, the letters 6-7 are **XX**; for hybrids, the letters 6-7 are **HX**

Strains Summary for Oreochromis niloticus				
Main ref.	166			
Country	USA	Pic.		
Strain code	ORNILNI002	Trait		
Breeding strategy		Viability		
Size of founding stock	86	Source of founding stock	wild	
Female	66		Ismailia Canal of Cairo, Egypt	
Male	20	Strain code of source		
No. of broodstock		Year of arrival	1982	
Years of first breeding				
Availability of strain				
Remarks	Commonly called `Egypt strain' in the USA.	Ref.		

e.g. OR - NIL - NI - 002

Royal Museum for Central Africa (RMCA Tervuren)

• *Breeding strategy* = refers to the method of propagation of the stock (e.g. chromosome manipulation (polyploidization and sex reversal), selective breeding, hybridization, gene transfer and normal mating).

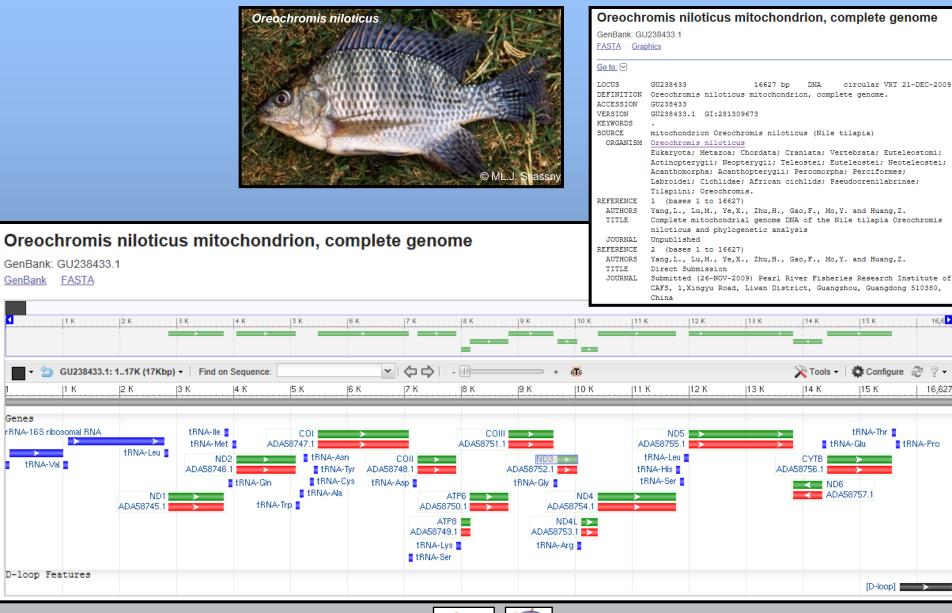
Strains Summary for Oreochromis niloticus					
Main ref.	16	166			
Country	US	A	Pic.		
Strain code	OF	RNILNI002	Trait		
Breeding strategy	у		Viability		
Size of founding	stock 86	i	Source of founding stock	wild	
Female	66	i		Ismailia Canal of Cairo, Egypt	
Male	20		Strain code of source		
No. of broodstoc	k		Year of arrival	1982	
Years of first bre	eding				
Availability of stra	ain				
Remarks		mmonly called `Egypt strain' in USA.	Ref.		

- *Viability* = refers to whether the strain is reproductively viable; for example, a strain of all female triploid trout would not be able to reproduce
- *No. of broodstock* = refers to the current number of fish used as breeders and helps determine the conservation status of and threat of extinction to the strain

GENBANK

- = a collection of all publicly available **DNA sequences**
- a new release is made available every 2 months
- each GenBank entry includes a description of the sequence, the scientific name and taxonomy, and a table of features that identifies coding regions and other sites of biological significance (transcription units, sites of mutations or modifications, and repeats).
- protein translations for coding regions and bibliographic references are included
- FishBase provides a link in the « Internet Resources » section of the Species Summary Page

Species Summery Page


Internet sources

Alien/Invasive Species database | BHL | Cloffa | BOLDSystems | Websites from users | Check FishWatcher | CISTI | Catalog of Fishes (gen., sp.) | DiscoverLife | Faunafri | Fishtrace | GenBank(genome, nucleotide) | GOBASE | Google Books | Google Scholar | Google | IGFA World Record | iSpecies | National databases | OsteoBase(skull, spine) | Public aquariums | PubMed | RFE Identification | Scirus | SeaLifeBase | Tree of Life | uBio | Wikipedia(Go, Search) | World Records Freshwater Fishing | Zoological Record

GENBANK

TERVUREN

Royal Museum for Central Africa (RMCA Tervuren)