

Introduction

Definition:

Population dynamics is the study of marginal and long-term changes in the numbers, individual lengths and weights, and age composition of individuals in one or several populations, and biological and environmental processes influencing those changes.

A population is affected by three dynamic rate functions:

1. Natality or Birth rate [often recruitment; reaching a certain size or reproductive stage].
2. Mortality, which includes harvest mortality and natural mortality.
3. Growth rate, which measures the growth of individuals in size and length.

FishBase and Fish Taxonomy Training Session 2017

Introduction

\rightarrow Population dynamics is crucial for fisheries management purposes.

Relatively easy to obtain for most fish species:

- maximum age and size.
- length-weight relationships.

More difficult to obtain:

- growth parameters.
- (natural) mortality estimates.
- Recruitment variability and recruitment time series.

FishBase and Fish Taxonomy Training Session 2017

Introduction

These points were so important for tropical fisheries research that they provided a good reason to create a database in 1987. This database became FishBase.

This vision however:

- Underestimated the number of species to be included in FishBase (now 33,500 species).
- Overestimated the number of species for which growth parameters and related information exist:
- growth parameters for about 2000 species are reported in FishBase.
- however, the treated species belong to 95% of the world's fisheries.

Similarly, the stocks for which over 750 time series of recruitment are included belong to the beststudied and most important single-species stocks in the world.

FishBase and Fish Taxonomy Training Session 2017

Recruitment (Natality)

* Recruitment fluctuations determine the annual catch levels of fisheries.
* Precise prediction of future recruitment is not possible, but broad generalizations are possible.
* The more recruitment time series are available from various parts of the world, the more precise and reliable will the generalizations be.

FishBase and Fish Taxonomy Training Session 2017

Recruitment (Natality)

FishBase gives a list with all stocks for which a recruitment series exist, if available.

A 'stock' consists of a group of individuals of a species which can be regarded as an entity for management or assessment purposes.

R.A. Myers et al's Recruitment Series for Gadus morhua						
Locality		c.V. (recr.)\%		Recruitment series		*
	-	- ${ }^{\circ}$	Begin	-	End	*
NAFO 233KL		108.4	1850		1993	
Iceland		47.0	1905		1998	
NAFO 4TVn		50.4	1917		1993	
Faroe Plateau		68.3	1924		1995	
North East Arctic		86.3	1930		1991	
North East Arctic		75.8	1930		1991	
North East Artic		108.5	1930		1991	
North Sea		66.0	1930		1994	
North East Arctic		80.8	1946		1993	
NAFO 4X		34.9	1948		1994	
Nafo 3 No		119.4	1953		1993	
West Greenland (NaFO 1)		705.9	1955		1992	
Greenland offshore component		710.1	1955		1992	
NAFO 3M		190.8	1956		1984	
NaFo 4vsw		56.2	1958		1993	
NaFO 3ps		36.5	1959		1993	
Nafo 5 S		41.7	1960		1991	
NAFO 5 Y		189.0	1960		1997	
NAFO 52		68.1	1960		1996	
Nafo $5 z$		134.4	1960		1997	
NAFO 3Pn4RS		72.3	1961		1993	
NAFO 3Pn4RS		171.2	1961		1997	
Baltic Areas 22 and 24		84.5	1965		1992	
Baltic Areas 25-32		63.7	1965		1995	
ICES Via		49.6	1966		1993	
Irish Sea		57.7	1968		1995	
Celtic Sea		94.8	1971		1994	
Kattegat		64.9	1971		1992	
Skagerrak		35.2	1971		1992	
ICES VIId		127.5	1976		1994	
NAFO 3M		488.0	1977		1990	
Flemish Cap (NaFO Div. 3M)		586.2	1988		1997	

R.A. Myers et al's Recruitment Series for Gadus morhua

FishBase and Fish Taxonomy Training Session 2017

Recruitment (Natality)

FishBase

Recruitment Series for Gadus morhua

> Time series graph (loading may take $2-3$ mins.)
> S-R Plot (loading may take $2-3$ mins.)
> Ransom A. Myers and colleagues
> Dalhousie University, Halifax, N.S., Canada

Common Name	Cod
Locality	Flemish Cap (NAFO Div. 3 M) ($47^{\circ} \mathrm{N}, 45^{\circ} \mathrm{W}$)
Year	1988-1997
Country	
Method for deriving time series	SPA
Age group for estimating F	05-Mar
Age at recruitment	1 (full years)
C.V. (recr.)	586.2 \%
Remarks	Natural mortality (1/y): 0.2. Spawning location: Shelf. Spawning/egg type: Oviparous, pelagic. Egg diameter: 1.4 mm . Length at hatching: 3 mm . Length at metamorphosis: 24 mm . Change in length during larval phase: 21 mm

Different methods are used to derive a time series of recruitment:

1/ direct counts.
2/ catch/effort data.
3/ electro-fishing.
4/ mark-recapture.
5/ sequential population analysis (SPA/APV).
6/ stock reconstruction.
$7 /$ research survey.
8/ (see additional information).

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Recruitment (Natality)

FishBase

Recruitment Series for Gadus morhua

It is possible to make different graphs in FishBase based on the present data:

Time series graph

Stock-recruitment relationship

Royal Museum for Central Africa (RMCA Tervuren)

Mortality

Louisiana (U.S.A.) 2010:
A 'dead zone' is a hypoxic zone (lack of dissolved oxygen) located in an aquatic environment. These zones have an increasingly important impact on fisheries and ecosystems.

Mortality

Z = F + M

Mortality is the rate of deaths from various causes. Usually it is on an annually basis in terms of proportion of the stock dying.

The total mortality (Z) is the mortlity of fishes caused by all different reasons. It is the sum of:
$1 /$ the fishing mortality (F), or the mortality of fishes which are being removed from the stock by fishing. 2/ the natural mortality (M), or the mortality within the late juvenile and adult phases of a population caused by predation, diseases, pollution,...

For unexploited stocks: $\mathbf{Z}=\mathbf{M}$

FishBase and Fish Taxonomy Training Session 2017

Mortality

The natural mortality (M) is estimated from the maximum length and the water temperature. It is one of the most difficult parameters to estimate from exploited stocks. Therefore estimates from empirical models are made: based on growth coefficients, length at first maturity, maximum size, or maximum age. The natural mortality rate is variable (e.g. in function of predator biomass).

The fishery mortality rate (F) can have a value of 0 for no fishing, up to very high values like 1,5 or 2, which
 indicates that the number of caught fish is 1,5 to 2 times the number of fish at the start of the fishing season.

FishBase and Fish Taxonomy Training Session 2017

Mortality

Maximum age and size

List of Population Characteristics records for Bagrus docmak												
$n=5$												
Sex	$\stackrel{\rightharpoonup}{*}$	Wmax	*	Lmax (cm)	-	Tmax (y)	-		Country	$\stackrel{\rightharpoonup}{*}$	Locality	*
unsexed		46.0 kg						Uganda			Murchison Falls, Victoria Nile, unknown	
unsexed		5.3 kg		71				Chad			Mayo Kebbie, Chad	
unsexed		15.0 kg		110							Lake Albert	
unsexed		20.0 kg		115				Congo Dem Rp			Lake Edward, 1988	
unsexed		33.0 kg		120							Nile river	

Population Characteristics of Bagrus docmak		
Main Ref.	13302	
Sex	unsexed	Data Ref. 13302
Wmax	20.0 kg total weight	
Lmax (cm)	115 FL	
Tmax (y)		
Locality	Lake Edward, 1988	
Country	Congo Dem Rp	
Comments		

0
FishBase and Fish Taxonomy Training Session 2017

Mortality

FishBase

Maximum age and size

This page can be considered as the FishBase answer to the book 'Guiness Book of Records'.
\Rightarrow The whale shark is the largest and heaviest fish.

Rhincodon typus Smith, 1828
Length: $\mathbf{2 0}$ m TL
Weight: 34.000 kg

\Rightarrow The rougheye rockfish is the longest-living fish.

Sebastes aleutianus (Jordan \& Evermann, 1898)
Age: 205 years

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Mortality

FishBase

Maximum age and size

Length distribution of tropical fishes (॰) vs. All other fishes in FishBase (॰).

© Jens Petersen

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Growth rate

Growth parameters in FishBase are based on the von Bertalanffy Growth Function (VBGF). This is the most used growth model for aquatic animals. It is introduced by von Bertalanffy in 1938 and predicts the length of a fish as a function of its age.

$$
L_{t}=L_{\infty}\left(1-e^{-K\left(t-t_{0}\right)}\right)
$$

$L_{t}=$ the predicted mean length of a fish of a given population at age t.
$\mathrm{L}_{\infty}=$ the mean asymptotic length (the length a fish could reach at an infinitely high age).
$\mathrm{K}=$ the growth coefficient (with units of reciprocal time). $\mathrm{t}_{0}=$ the theoretical (and generally negative) age the fish would have at zero length, provided by an extrapolation of the VBGF.
K is often called a growth constant, but it can change when fish grow.

Growth rate

Similarly, the von Bertalanffy Growth Function (VBGF) can be made based on weight instead of length.

$$
W_{t}=W_{\infty}\left(1-e^{-K\left(t-t_{0}\right.}\right)^{b}
$$

$W_{t}=$ the predicted mean weight of a fish of a given population at age t.
$\mathrm{W}_{\infty}=$ the mean asymptotic weight (the weight a fish could reach at an infinitely high age).
$\mathrm{K}=$ the growth coefficient (with units of reciprocal time).
$\mathrm{t}_{0}=$ the theoretical (and generally negative) age the fish
would have at zero length, provided by an extrapolation of the VBGF.
b = the exponent of the length-weight relationship.

$$
W=a L^{b}
$$

FishBase and Fish Taxonomy Training Session 2017

Growth rate

\rightarrow Growth models which do not explicitly consider seasonal oscillations fail to capture an essential aspect of the growth process.
\rightarrow Moreover, in a tropical environment differences in temperature between winter and summer as small as $2^{\circ} \mathrm{C}$ are sufficient enough to induce seasonal growth oscillations which, while not visually detectable, are still statistically significant.
\rightarrow The growth model which fits best with seasonal growth oscillations is probably the growth model of Somer (1988):

$$
L_{t}=L\left(1-e^{-\left(K\left(t-t_{0}\right)+S_{t}-s_{t_{0}}\right)}\right)
$$

$L_{t}=$ the predicted mean length of a fish of a given population at age t.
$\mathrm{K}=$ the growth coefficient (with units of reciprocal time).
$\mathrm{t}_{0}=$ the theoretical (and generally negative) age the fish would have at zero length, provided by an extrapolation of the VBGF.

Defined as in the standard VBGF.
$\mathrm{t}_{\mathrm{s}}=$ the time between $\mathrm{t}=0$ and the start of a sinusoid growth oscillation.

For visualisation, it helps to define WP (Winter Point), which expresses the period of time when the growth is slowest.

$$
W P=t s+0,5
$$

The WP is often near 0,1 in the northern hemisphere (mid-February) and 0,6 in the southern hemisphere (mid-August), hence its name.

FishBase and Fish Taxonomy Training Session 2017

Growth rate

\rightarrow Growth models which do not explicitly consider seasonal oscillations fail to capture an essential aspect of the growth process.
\rightarrow Moreover, in a tropical environment differences in temperature between winter and summer as small as $2^{\circ} \mathrm{C}$ are sufficient enough to induce seasonal growth oscillations which, while not visually detectable, are still statistically significant.
\rightarrow The growth model which fits best with seasonal growth oscillations is probably the growth model of Somer (1988):

$$
L_{t}=L\left(1-e^{-\left(k\left(t-t_{0}\right)+s_{t}-s_{t_{0}}\right)}\right)
$$

C indicates the amplitude of the growth oscillations:

$$
S_{t}=\left(C \frac{K}{2^{\pi}}\right) \sin ^{\pi}\left(t-t_{s}\right)
$$

$$
S_{t_{0}}=\left(C \frac{K}{2^{\pi}}\right) \sin ^{\pi}\left(t_{0}-t_{s}\right)
$$

- When $\mathrm{C}=0$, the equation reverts to the standard VBGF.
- When $\mathbf{C = 0 , 5}$, the seasonal growth oscillations are such that growth is increased by 50% at the peak of the growth season in summer and, briefly, reduced by 50% in winter.
- When $\mathbf{C = 1}$, growth increases by $\mathbf{1 0 0 \%}$; it doubles during summer and becomes $\mathbf{0}$ in the depth of winter.

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length-Weight relationship

$$
W=a L^{b}
$$

$\mathrm{W}=$ total fish weight (g).
$L=$ total fish length(cm).
a = a condition factor, for comparing fish of the same species. It varies between species and may vary based on sex and season.
$\mathbf{b}=\mathbf{a n}$ exponent describing the growth.

$$
\text { Fulton's condition factor }(K) \text { : } \quad K=\frac{10^{N} W}{L^{3}}
$$

Example: Salmo trutta Linnaeus, 1758

© DPI, The State of Victoria

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length-Weight relationship

$$
W=a L^{b}
$$

$\mathrm{W}=$ total fish weight (g).
$L=$ total fish length(cm).
$\mathrm{a}=\mathbf{a}$ condition factor, for comparing fish of the same species. It varies between species and may vary based on sex and season.
b = an exponent describing the growth.
$1 / b=3$: the growth is isometric and the organism will grow uniformly; the fish has a consistent body form and specific gravity.

$2 / b>3$ ou $b<3$: the growth is allometric (positive or negative).
There is a different growth of a part of the organism in relation to the growth of the whole organism or some other part of it.

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length-Weight relationship

$W=a L^{b}$ Atter log-transtormation $\log W=\log a+b \log L$

Growth rate

FishBase

Length-Weight relationship

More information				
Countries	Common names	Age/Size	References	Collaborators
FAO areas	Synonyms	Orowir	Aquaculture	Pictures
Ecosystems	Metabolism	Length-weight	Aquaculture profile	Stamps, Coins
Occurrences	Predators	Length length	Strains	Sounds
Introductions	Ecotoxicology	Length frequencies	Genetics	Ciguatera
Stocks	Reproduction	Morph metrics	Allele frequencies	Speed
Ecology	Maturity	Morph logy	Heritability	Swim. type
Diet	Spawning	Larvae	Diseases	Gill area
Food items	Fecundity	Larval dynamics	Processing	Otoliths
Food consumption	Eggs	Recruilment	Mass conversion	Brains
Ration	Egg development	Abund nnce	Vision	

FishBase contains information on the relation between the length and weight in different populations.

Refresh Download selected data Bayesian analysis
Preliminary parameter estimates are provided below, based on your selection of studies and weighted by the scores.
You may want to exclude or give less weight to studies that are far from the regression line in the graph
Selected studies $=8$, geometric mean $\mathbf{a}=0.0089$, mean $\mathbf{b}=2.98, \mathbf{S D} \log 10(W)=0.0000, \mathbf{S D} \log 10(a)=0.3254 \mathbf{S D} \mathbf{b}=0.2927$
Estimate weight for given length: $0.0 \quad(\mathrm{~cm})=0.00$
(g) 95% range 0.00
0.00
(g)

Include Genus Include Family
Search for more references on length-weight: Scirus

Growth rate

Length-Weight relationship

Length-Weight Relationship for Bagrus docmak			
Main Ref. :8992			
Data Ref. :8992			
Length (cm) : $8.4-32.0 \mathrm{SL}$			
Number of fish : 123			
Sex of fish: unsexed			
Method: \|type I linear regression			
a: 0.01000			conmaence
b: 2.987			confidence li
$\mathbf{r}^{\mathbf{2}}: 0.956$			
Estimate doubtful ?:			
Locality : Volta River			
Country : Ghana			
Comments:			
Calculated weight:	10	$\mathrm{cm} \mathrm{SL}=>9.71 \mathrm{~g}$	Recalculate

There are different methods to determine the values for a and b :
1/ linear regression type I (predictive) - linear regression of logW vs. logL.
2/ linear regression type II (functional)- linear regression of logW vs. logL.
3 / non-linear regression of W vs. L.
4/ algorithm of Pauly \& Gayanilo (1996) - from length-frequency samples and their bulk weights.
5 / by setting $b=3$ and using a single pair of $L-W$ values to calculate a.
$6 /$ by setting $b=3$ and using the geometric mean of L and W values to calculate a.
7 / any other method (specified in the 'comments'-field).

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length-Weight relationship

Length-Weight Relationship for Bagrus docmak			
Main Ref. :8992			
Data Ref. :8992			
Length (cm) : $8.4-32.0 \mathrm{SL}$			
Number of fish : 123			
Sex of fish : unsexed			
Method thme linear regrescion			
a: 0.01000 95			confidence li
b:	2.98		confidence li
	0.956		
Estimate doubtful ? :			
Locality :	Volta River		
Country :	Ghana		
Comments:			
Calculated weight:	10	$\mathrm{cm} \mathrm{SL}=>9.71 \mathrm{~g}$	Recalculate

The length-weight relationship can be predicted. This prediction won't be perfect, so we need to be able to say how strong that relationship is, or how the line fits the data.
r = the correlation coefficient. It indicates the extend to which the pairs of numbers for the two variables lie on a straight line.

- $r= \pm 1$: perfect linearity.
- $r>1$: trend is upwards.
- $r<1$: trend is downwards.

If there is no linear trend, r is close to 0 . A correlation of 0,9 is very strong.

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length-Weight relationship

Growth rate

Length-Length relationship

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length frequencies

FishBase and Fish Taxonomy Training Session 2017

Growth rate

Length frequencies

More information				
Countries	Common names	Age/Size	References	Collaborators
FAO areas	Synonyms	Growth	Aquaculture	Pictures
Ecosystems	Metabolism	Length-weight	Aquaculture profile	Stamps, Coins
Occurrences	Predators	Lengthelength	Strains	Sounds
Introductions	Ecotoxicology	Length-frequencies	Cometio	Siguete
Stocks	Reproduction	niopinumburs	Allele frequencies	Speed
Ecology	Maturity	Morphology	Heritability	Swim. type
Diet	Spawning	Larvae	Diseases	Gill area
Food items	Fecundity	Larval dynamics	Processing	Otoliths
Food consumption	Eggs	Recruitment	Mass conversion	Brains
Ration	Egg development	Abundance	Vision	

Royal Museum for Central Africa (RMCA Tervuren)

Growth rate

Length frequencies

$$
W=a L^{b}
$$

FishBase and Fish Taxonomy Training Session 2017

Growth rate

FishBase

Length frequencies

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Growth rate

FishBase

Length frequencies

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Length-Frequency Wizard

FishBase

Proceed Exit Background

Note: It is assumed here (1) that the L-F sample covers a wide range of lengths, (2) that gear selection is accounted for and (3) that the sizes of monthly samples are more or less equal if the total sample is accumulated over more than one month. Accumulated samples should include altogether at least 500 specimens. If L-F data stem from a single sample it should include at least 1000 specimens. A good sample would be accumulated over 6 or more months and include over 1500 specimens.

Length-Frequency Wizard

FishBase

Length-Frequency Analysis Wizard (Limnothrissa miodon)
Step 2: Data Entry
The maximum reported length for this species is 17 cm SL . The 'Max. age \& size' table may contain additional maximum length values for different areas. Please enter the maximum length known for your population and the espective length type ($\mathrm{TL}=$ total length, $\mathrm{SL}=$ standard length, $\mathrm{FL}=$ fork ength).
Maximum length: 17.0 (cm)
Length type: TL
Please enter the mid-ranges of your length classes and the number of fish counted therein. Separate entries by a space and use point as decimal symbol (see example). [1]

Proceed	Back Exit	Background
Length (cm) Frequency $(\mathrm{n}$ 5.25 o 5.750		

Length (cm) Frequency (n.
5.250
5.750
6.250
6.750
7.250
7.751
8.250
8.753
9.25
9.754
10.257
10.754
11.25
11.75
12.25
12.75
13.250
13.750
14.250
14.75
15.250

Proceed Back Exit
Example
52.512 .0
57.514 .0
62.523 .0

Note: For the calculation of natural mortality in Step 7 we need the length type in TL. For some species such as tunas the difference between TL and FL is small, and thus FL data can be treated as TL. Otherwise see our ' L-L relationship' table for conversions of length types.

Length-frequency graph

Length-Frequency Wizard

Length-Frequency Analysis Wizard (Limnothrissa

Step 4: Length-Weight Relationship
In this step we calculate the weight of the fish in your Length-Frequency sample. We use a length-weight relationship of the form $W=\mathbf{a}^{*} \mathrm{~L}^{\wedge} \mathbf{b}$ from FishBase with the same length-type as in your sample, if available. You can replace the values for \mathbf{a} and \mathbf{b} if you have better estimates (length in cm , replace the values for \mathbf{a} and \mathbf{b} if you have better estimates (length in cm ,
weight in g). Additional length-weight estimates for this species may be weight in g). Additional length-weight estimates for this species may be
available in the 'Length-weight' table. If no length-weight relationship is available in the 'Length-weight' table. If no length-weight relationship is
available set $b=3.0$ and $a=0.1$ for short and round fishes, $a=0.01$ for normal available set $b=3.0$ and $a=0.1$ for short and round fishes, $a=0.01$ for normal
fishes, and $a=0.001$ for eel-like fishes. In the following analysis the values for yield will then be only approximations, but peak in biomass, yield increase in percent, and preliminary exploitation rate will be correct.
$a=0.01920$
$\mathrm{b}=2.68100$
Proceed Back Exit Background
Note: Values for L-W are required for proceeding.

20

Length-weight relationship

$\begin{aligned} & \text { Length-Frequency Analysis Wizard (Limnothrissa } \\ & \text { miodon) }\end{aligned}$
miodon)
Step 5: Actual Yield
Below we show your Length-Frequency data with actual yields in metric tons
The total yield of your sample is 0.20 tons. Note that the $\mathbf{6 2 . 5} \mathbf{~ c m}$ length class
poduced the highest yield ($\mathbf{0 . 0 6}$ tons) in your sample.
Proceed Back Exit Background
$\mathrm{h}=6$ (Number of Length Classes)
Length (cm) Frequency Yield (tons)

Actual yield data

Proceed Back Exat Backgound
Note: If your frequency is not in absolute numbers, then the yield yield'
relative

Length-Frequency Analysis Wizard (Limnothrisa miodon)
Step 6: Yield Gruph
Below we show a graph of the yield (biomasss in your sample. Note that small fish usually do not contribute much to the yield. In an unfished or well-managed stock the peak of the yield
curve will be close to Lopt. The greater the distance eetween the peak and Lopt, hee arger
the degree of growth and potentially recruitment overfishing In In your sample the jield peaks the degree of growth and potentially recruitment overishing. In your sample the yield peaks
at 10.25 cm length This graph can be used to monitor the development of a fishery over several years.
Yield (\% of largest value)

FishBase and Fish Taxonomy Training Session 2017

Length-Frequency Wizard

FishBase

Length-Frequency Analysis Wizard (Limnothrisa miodon)
Step 7: Growth and Natural Mortality
To estimate exploitation rate from your data and the potential gain from a different fishing rategy you need to know the growth (Linf, K) and natural mortality (M) of your stock a a the Life hist tool to improve our estimates Lmax: 17 cm TL

Linf:	18.0 cm TL	Recalculate
K:	0.82 1/year	Recalculate
M:	1.59 1/year	Recalculate

The subsequent calculation of preliminary exploitation rate (E) depends on a good estimat of Lopt (which we recalculate here from the growth and mortality values above) and the obser

Yield (\% of largest value)

Length-Frequency Analysis Wizard (Limnothrissa miodon)

Step 8: Preliminary Exploitation Rate

The length class 62.5 cm with the highest yield in your L-F sample can be used to obtain a preliminary estimate of total mortality (Z) in your stock. Fishing mortality (F) is then obtained from $F=Z-M$, and the exploitation rate of $E=F / Z=1.97$ means that about $\mathbf{2 0 \%}$ of each generation of fish in your sample died from fishing. Exploitation rates of $\mathrm{E}>0.5$ are considered unsustainable for most species and fisheries that include juveniles and adults. Note that if F is close to zero or negative then either your stock is unfished or your L-F sample is not suitable for this analysis.

Preliminary total mortality (Z): $\quad-1.39$
Preliminary fishing mortality (F): -2.73
Exploitation rate
Preliminary exploitation rate (E): 1.97
We also provide the Beverton and Holt estimation of Z from $Z=K *(L i n f-L m e a n) /(L m e a n-L ')($ see Step 3):
B \& H total mortality (Z): $\quad-9.36$
B \& H fishing mortality (F): -10.70
B \& H exploitation rate (E): 1.14
Proceed Back Exit Background
For advanced users we also provide an approach to estimate Linf, $Z / K, Z$, annual reproductive rate (alpha), intrinsic rate of population increase (rmax), population doubling time (td), and fishing mortality associated with maximum sustainable yield (Fmsy). Advanced L-F Wizard

$$
\begin{array}{|l|l|l|l|}
\hline \text { Lm } & \text { Lopt } & \text { Linf } & \text { Redraw } \\
\hline
\end{array}
$$

Length-Frequency Wizard

FishBase

Length-Fr miodon)

Step 9: Fishing Strategy Background

Fishing strategy

Normally you can achieve much higher yields from your stock if you only catch ish with lengths around Lopt. This means you will not catch juveniles in order o let them realize their growth and spawning potential, and you will not catch very big adults, in order to benefit from their high fecundity and their good In the next steps we will calculate the gain in yield if such fishing strategy is applied. Note that such analysis does not make sense for new, unfished, or well managed stocks (peak of yield $>=$ Lopt) or Length Frequency samples that do Change Z below if you want to use the B \& H estimate of $Z=-9.36$ Proceed Back Exit Background

The following parameters vill be used for the subsequent calculations:

Linf:	$\mathbf{1 8 . 0} \mathrm{cm} \mathrm{SL}$
K:	$\mathbf{0 . 6 5} 1 /$ year
M:	$\mathbf{1 . 3 4} 1 /$ year
Z:	$\mathbf{- 1 . 3 9} 1 /$ year
Lopt:	$\mathbf{1 0 . 7} \mathrm{cm}$

Length-Frequency Analysis Wizard (Limnothrissa
miodon)
Step 10: Calculation of Potential Yield
In this step we calculate the potential yield if you only catch fish around Lop at an average length of $\mathbf{1 0 . 7} \mathbf{~ c m}$, which corresponds to an age of $\mathbf{1 . 4}$ years Thus, the column 'Potential Freq.' contains the number of fish in each length class that will survive to reach 1.4 years, and the column 'Potential Yield contains the contribution of the respective length class to the total potential yield. Note that the numbers in 'Potential Freq.' are lower than the numbers in 'Frequency, due to natural mort Proceed Back Exit Background
$=6$ (Number of Length Classes)
Length (cm) Frequency Actual Yield (tons) Potential Freq. Potential Yield (tons)

52.5	12.0	0.017156	0.0	0.000000
52.5	12.0	0.017156	0.0	0.00000

52.5	12.0	0.017156	0.0	0.000000
52.5	12.0	0.017156	0.0	0.000000

6.5	14.0	0.026505	0.0	0.000000
62.0	0.056326	0.0	0.00000	

62.5	23.0	0.056326	0.0	0.000000

Proceed Back Exit Background

FishBase and Fish Taxonomy Training Session 2017

Growth

Growth

-
FishBase and Fish Taxonomy Training Session 2017

Growth

Growth

Growth of Oreochromis esculentus				
Auximetric graph Lm vs Linf graph M vs Linf graph Lm vs Linf graph M vs K graph (loading of graphs may take 2-3 min.)				
Data Type:	scale annual rings			
sex.	unsexeu			
Linfinity (cm) :	32.0 TL			95\% confidence limit:
$\mathrm{K}(1 / \mathrm{y})$:	0.50 Ford/Walford plot	n :	r^{2} :	95\% confidence limit:
to (y) : $\quad \square$				95\% confidence limit:
Winf.	616.00 g	other(see comments) bused :3.000	$ø \cdot: 2.71$	
c :				
$\mathrm{m}(1 \mathrm{y})$:	1.750 M Ref. :1795 M doubtful?	n:	r^{2} :	95\% confidence limit:
	plot of Z on effort			
Lm (cm) :	22.0	0.69	Unsexed	TL Lm Ref. : 787
Locality:	Lake Victoria, Kavirondo Gulf			
Country :	Kenya			
Environment:	open waters			
Temp. :	25.0 Temp. Ref. :			
Comment:	Winf from Ref. 115			

There are different source data used for the growth estimation:

1/ otolith annuli.
2/ scale annuli.
3 / other annual rings.
4/ daily otolith rings.
5/ tagging / recapture.
6 / length-frequency data.
7/ direct observations.
8/ several data types.
9/ other possibilities.

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Growth

Growth

Growth of Oreochromis esculentus				
Auximetric graph Lm vs Linf graph M vs Linf gra Lm vs Linf graph M vs K graph (loading of graphs may take 2-3 min.)				
Main Ref.	787 Data Ref. :787			
Data Type:	scale annual rings			
Sex:	unsexed			
Linfinity (cm).	320 TL			05\% confidoncolimit.
$\mathrm{K}(1 \mathrm{y})$:	0.50 Ford/Walford plot	n:	r^{2} :	95\% confidence limit:
or				sorneontueneemm
Winf.	616.00 g	other(see comments) b used :3.000	$\varnothing^{\prime}: 2.71$	
c:				
$\mathrm{m}(1 / \mathrm{y})$:	1.750 M Ref. :1795 M doubtful?	n:	r^{2} :	95\% confidence limit:
	plot of Z on effort			
Lm (cm) :	22.0	0.69	Unsexed	TL Lm Ref. : 787
Locality :	Lake Victoria, Kavirondo Gulf			
Country :	Kenya			
Environment:	open waters			
Temp.:	25.0 Temp. Ref. :			
Comment:	Winf from Ref. 115			

There are different methods to estimate a given set of growth parameters:
1/ Ford-Walford plot.
2/ von Bertalanffy / Beverton plot.
3/ Gulland \& Holt plot.
4/ nonlinear regression. 5/ ELEFAN.
6/ other methods.
See Bougis (1976), Ricker (1980), Gulland (1983), Pauly (1984, 1997), Gayanilo \& Pauly (1997) and other publications for the description of these methods, their underlying hypotheses, conformity of the data and their biases.

FishBase and Fish Taxonomy Training Session 2017

Growth

Growth

Growth of Oreochromis esculentus				
Auximetric graph Lm vs Linf graph M vs Linf graph Lm vs Linf graph M vs K graph (loading of graphs may take 2-3 min.)				
Main Ref. :	787 Data Ref. :787			
Data Type:	scale annual rings			
Sex:	unsexed			
Linfinity (cm) :	32.0 TL			95\% confidence limit:
$\mathrm{K}(1 / \mathrm{y})$:	0.50 Ford/Walford plot	n :	\mathbf{r}^{2} :	95\% confidence limit:
to(v):	95\% confidence limit.			
Winf.	616.00 g	```other(see comments) b used :3.000```	$\varnothing^{\prime}: 2.71$	
$\mathrm{m}(1 / \mathrm{y})$:	1.750 M Ref. :1795 M doubtful?	n :	r^{2} :	95\% confidence limit:
	plot of Z on effort			
Lm (cm) :	22.0	0.69	Unsexed	TL Lm Ref. : 787
Locality:	Lake Victoria, Kavirondo Gulf			
Country :	Kenya			
Environment:	open waters			
Temp.:	25.0 Temp. Ref. :			
Comment:	Winf from Ref. 115			

Conversion of W_{∞} from L_{∞} based on following choices:
1/ as given in MainRef. or Ref. for growth.
2/ computed using L/W relationship of the same stock. 3/ computed using L/W relationship of an other stock from the same species.
4/ computed using L/W relationship of a similar species. 5 / other (see Comments).
$\varnothing^{\prime}=$ growth performance index.
It is for comparison with the \varnothing ' index of other stocks from the same species, or from a closely allied species.

FishBase and Fish Taxonomy Training Session 2017

Growth

FishBase

Growth

FishBase makes it possible to reproduce an auximetric plot of growth parameters (K vs. L_{∞}, on logaritmic basis).

- Possible comparisons with other miscellaneous species, species of the same family, or current species.
- Possibility to change the growth parameters and redraw the plot.

Royal Museum for Central Africa (RMCA Tervuren)
FishBase and Fish Taxonomy Training Session 2017

Growth

FishBase

Growth

FishBase makes it possible to reproduce an auximetric plot of growth parameters (K vs. L_{∞}, on logaritmic basis).
Possible comparisons with other miscellaneous species, species of the same family, or current species.
Possibility to change the growth parameters and redraw the plot.

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

Life-History Tool

FishBase

The Life-History Tool contains the different parameters on population dynamics and life history of a certain species, such as growth, length at first maturity,
It uses the best available data in FishBase as default for the various equations, but users can replace

FishBase and Fish Taxonomy Training Session 2017

More info:

FAO Fisheries Technical Paper 306: Introduction to tropical fish stock assessment.

Christensen, V. \& J. MacLean (2011) Ecosystem approach to fisheries. Cambridge University Press, Cambridge. 325 p.

- Pauly, 1997 (adaption française par J. Moreau) Méthodes pour l'évaluation des ressources halieutiques. Editions CEPADUES, Toulouse. 288 p.

Royal Museum for Central Africa (RMCA Tervuren)

FishBase and Fish Taxonomy Training Session 2017

